
AD-A092 b69 STEVENS INST OF TECH HOBOKEN N.J DAVIDSON LAB FIG 13/10
BLADE PRESSURE DISTRIBUTION FOR A MODERATELY LOADED PROPELLER.(fl
SEP 80 S TSAKONAS, J P BRESLIN. W R JACOBS NOOOIA-77-C-0059

UNCLASSIFIED NL

III



~36

111[25 _ 1.6

MIG(JGOOPY R SOL Ul ION ItIs fI HI



R-2063

0 DAVIDSON
LABORATORY

Report S IT-DL-80-9-2063

September 1980

BLADE PRESSURE DISTRIBUTION
FOR A MODERATELY LOADED PROPELLER

by

S. Tsakonas, J.P. Breslin and W.R. Jacobs

DTIC
SELECTEr,DEC 8 1980.

A

This study was sponsored by the
Naval Sea Systems Command

General Hydromechanics Research Program
Under Contract NOOO-14-77-C-O059

Administered by%\ T Naval Ship Research and Development Center

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

C
(DL Project I475/009)W

80 12 04 u76



UNCLASSIFIED
SECURITY CLASSI FICATION O

F 
THIS PAGE 04hro Dae. Enfe-rd)

COMPINTRUTINSORREPORT DOCUMENTATION PAGE BFOR I.LSTRUCTIONS
'tVBER . 2. OVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Repor SIT-DL-80-9-2063 D-/qQ 6e? _ . .
4 TITLE (en Subuitle) TYPE OF REPORT 6 PERLOG COVERED

BLADE PRESSURE DISTRIBUTION FOR A *' / FINAL
MODERATELY LOADED PROPELLER,

6 .
1
-,ER*,,NGORG. RE'ORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(&)

S.iTsakonas, J;P.;Breslin &Ad W.R. Jacobs -N00 14-77-C-005914,

9. PERFORMING ORGANIZATION NAME AND ADDRESS -I. PROGRAM ELEMENT. PROJECT, TASK

Davidson Laboratory / -... -- 6 I- F LO.

Stevens Institute of Technology 5!N_ ... 9J
Castle Point Station, Hoboken, NJ 07030 ,/SR P23 P)1 l

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

David W. Taylor Naval Ship Research and / Septower 1:989
Development Center, Code 1505 .......... rV1 GES

Bethesda, MD 20084 x + 59 pp.
14. MONITORING AGENCY NAME & ADORESS(II different Irom Controllinl Office) IS. SECURITY CLASS. (of thie repotl)

Office of Naval Research UNCLASSIFIED
800 N. Quincy Street
Arlington, VA 22217 1s. DECLASSIFICATION/ DOWNGRADING

SCM EDULE

16. OISTRIBUTION STATEMENT tol this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, II dillerent from Report)

18. SUPPLEMENTARY NOTES

Sponsored by the Naval Sea Systems Command General Hydromechanics Research
Program administered by the David We Taylor Naval Ship Research and Develop-
ment Center, Code 1505, Bethesda, MD 20084.

19. KEY WORDS (Continue on tenerse side It neceeery mnd Identlly by block number)

Hydrodynamics
Moderately Loaded Propellers
Blade Pressure Distribution

g0. CT (Continue on r eree aide It neceeeary and Identify by block number)

A new theoretical procedure has been developed modifying the existing
analysis for a marine propeller operating in a nonuniform inflow field by
considering the radially varying mean wake and mean propeller induction.
In addition, the selection of a new reference surface around which the
perturbation analysis is developed is based on the nonlinear form of the
Bernoulli equation together with an appropriate kinematic condition

(Continued)

DD , , 1473 EDITION OF I NOV SIS OBSOLETE -
S/N 0 0 / ot4) CR UNCLASSIFIED e tSEURT C ASFICATION F. I AEI17o aaEtrd



UNCLASSIFIED
.. I 11,41 1 Y CL A S If- LA I I, IN 0i ,1 I'llVA (..U0Ish." 1 :4 ,.,)

20. Abstract (Cont'd)

>existing at the propeller operational condition. A flow field closer
to the propeller operating condition is achieved thereby and the
linear theory requirement of small perturbation quantities is rein-
forced. The approach is thus applicable to moderately to heavily
loaded propellers immersed in the stronger wakes of hulls of large
block coefficient, although it can be used for lightly loaded pro-
pellers as well.

)

II i

UNCLASSIFIED
59CUPITY CLASSIFICATION Of THIS PAG&(W7%n Dale &nsVtodj



STEVENS INSTITUTE OF TECHNOLOGY
DAVIDSON LABORATORY
CASTLE POINT STATION
HOBOKEN. NEW JERSEY

Report SIT-DL-80-9-2063

September 1980

BLADE PRESSURE DISTRIBUTION
FOR A MODERATELY LOADED PROPELLER

by

S. Tsakonas, J.P. Breslin and W.R. Jacobs

This study was sponsored by the

Naval Sea Systems Command
General Hydromechanics Research Program

Under Contract NOOO-14-77-C-0059
Administered by

IWT Naval Ship Research and Development Center A
(DL Pro,.ct 4475/009)/If-

Approved:

John P. Breslin
x + 59 pp. Director

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

S



R-2063

ABSTRACT

A new theoretical procedure has been developed modifying the exist-

ing analysis for a marine propeller operating in a nonuniform inflow field

by considering the radially varying mean wake and mean propeller induction.

In addition, the selection of a new reference surface around which the

perturbation analysis is developed is based on the nonlinear form of the

Bernoulli equation together with an appropriate kinematic condition exist-

ing at the propeller operational condition. A flow field closer to the

propeller operating condition is achieved thereby and the linear theory

requirement of small perturbation quantities is reinforced. The approach

is thus applicable to moderately to heavily loaded propellers immersed in

the stronger wakes of hulls of large block coefficient, although it can be

used for lightly loaded propellers as well.

KEYWORDS

Hydrodynamics

Moderately Loaded Propellers

Blade Pressure Distribution
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NOMENCLATURE

A(x) function defined in Eq.(17)

a(r) inverse advance ratio (Eq.4)

a effective inverse advance ratio (Eq.41)e

designation of NACA-a meanline

C pressure coefficient

C(r) expanded chord length, ft

F propeller-induced forces in x,y,z direction

f camberline ordinates from face pitch line

f Tblade thickness distribution over one side of blade section

I( ) modified Bessel function of first kind, of order m

I(r) defined in Eq.(6)

index

J d design advance ratio

Jod off-design advance ratio

AJ Jod-Jd

j index

K kernel of integral equation

R modified kernel after chordwise integrations

Km( ) modified Bessel function of second kind of order m

k variable of integration

L (q) (,) loading distribution in lb/ft

L (q)(r) spanwise loading in lb/ft

Lq spanwise loading coefficients of the chordwise modes in lb/ft

I integer multiple

Mb blade bending moment about face pitch line

vii
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M(,p,eo) source strength at point (t,p,eo)

m index of summation

m order of lift operator

N number of blades

n blade index

n rps

n order of chordwise mode

n unit normal vector on helicoidal surface at loading point

no unit normal vector on helicoidal surface at control point

P,p pressure, lb/ft
2

AP P_ - P+, pressure jump, lb/ft2

P(r) geometric pitch at each radial position, ft

QxVyIz propeller-induced moments about x,y,z axis

q order of harmonic of inflow field

R Descartes distance

r radial ordinate of control point

r° 0propeller radius, ft

S propeller lifting surface, ft
2

s chordwise location as fraction of chord length

t time, sec

t maximum thickness of blade, ft0

U free stream velocity, ft/sec (design)

UA(r) local speed of advance, ft/sec (design)

UA(r)od local speed of advance, ft/sec (off design)

u variable of integration

uivi,w I  axial, tangential and radial components of perturbation velocities

V(q)(r) Fourier coefficients of the known downwash velocity distribution

viii
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Vc normal velocity due to camber effects

Vf normal velocity due to flow-incidence angle

VN normal velocity due to wake

VT normal velocity due to nonplanar thickness

VL longitudinal perturbation velocity (Vx-UA)

VT tangential perturbation velocity

V measured axial velocityx

W r  mean wake velocity in radial direction

x longitudinal ordinate of control point

x,r,T cylindrical coordinates of control point

x,y,z Cartesian coordinate system

O(r) tan'I (1/a(r)r)

6 defined in Eq.(4)

chordwise mode shapes

e-Ot

e angular ordinate of loading point

0 angular position of loading point with respect to blade
o reference line, in moving coordinate system

8b  subtended angle of projected blade semichord, radians

en 2TT(n-l)/N, n=1,2, ... NnN

0 (r) geometric pitch angle at each radial position
p

0 angular chordwise location of loading point

A() (y) defined in Eq.(6) (see Appendix A)

A, (y) defined in Appendix A

Clongitudinal ordinate of loading point

t,p,E) cylindrical coordinates of loading point

p radial ordinate of loading point

Pf mass density of fluid

ix
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PO ratio of leading edge radius to chord

a angular measure of skewness from blade reference line

AaY r _ UP = difference in skewness at control and loading point

T variable of integration

velocity potential

(m) generalized lift operator

1angular ordinate of control point
To angular position of control point with respect to blade

reference line, in moving coordinate system

90 angular chordwise location of control point

acceleration potential

magnitude of angular velocity of propeller

Superscripts

r refers to control point

P refers to loading point

7
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INTRODUCTION

In the course of a series of investigations concerned with ad-
I,2"

aptation of the unsteady lifting surface theory to marine propellers,

the following basic assumptions have been made:

a) the propeller operates in a spatially nonuniform,

nonseparating and noncavitating flow of an inviscid

and incompressible fluid,

b) all perturbation quantities are considered to be small,

so that the linearized version of the theory may be used

as a basis,

c) a helicoidal surface of constant pitch (from hub-to-tip)

is selected as reference surface and deviations from this

surface are considered as the perturbation quantities.

The reference surface, over which the singularities are distributed,

is the "zero lift" helicoidal with constant pitch 2r n where U is

the forward speed (ship speed) and 0 the angular velocity of the

rotating propeller. Any deviation from this surface is taken to be

induced by perturbation velocities such as those due to ship wake,

incident flow angle, blade camber, non-planar blade thickness and

flow-distortion blade thickness. These effects have been considered

separately and then, as permitted in the linear theory, have been

added together to determine their combined effects on the loading and

hydrodynamic forces. The linearized version of the unsteady lifting

surface theory leads to an integral equation relating the unknown

loading distribution with the known onset velocities. The equation

is valid for a lightly loaded propeller with wakes of small magnitude

(intensity). With today's tendency toward longer and fuller hull forms, the

wake intensity behind the hull is quite strong. Thus the perturbation quan-

tities are larger so that the linearized theory is inadequate for the needs

of the propeller designer in regard to the prediction of mean thrust and

torque.

*Superior numbers in text matter refer to similarly numbered references

listed at the end of this report.

I7
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The propeller operating in ship wake which varies with radial

and angular position not only encounters the spatial inhomogeneities

of the incoming flow but it is also under the influence of the self-

induced velocity field. The latter can be determined provided the

blade loadings are known which, in effect, requires "apriori" knowledge

of the reference surface. Thus an iterative procedure must be estab-

lished based, as a first step, on an assumed helicoidal reference

surface determined by the known variable hydrodynamic pitch angle from

which the first approximations of blade loading and propeller induction

are determined. Having this induction and the radial variation of the

speed of advance a new reference surface is established and thus another

set of calculations is performed for the evaluation of the new blade

loading and induction effect. The iterative procedure is continued

until no variation in the pitch of the reference surface and in the

blade loading can be observed.

While the iterative procedure uses the same linearized approach

as developed in Reference 1, it takes into account the quadratic form

of the Bernoulli equation, since the pertubation velocities are some-

times of the same order of magnitude as the velocities of the undisturbed

flow in which case linearization of the pressure equation is not valid.

This procedure is appropriate to moderately loaded propeller opera-

tional conditions. Once the final geometry of the reference surface

is established the solution of the integral equation relating the

unknown loading with the known onset velocities will determine the

blade pressure distribution and the corresponding hydrodynamic forces.

It should be noted that the imposed boundary conditions on the blade

are fixed and do not change during the iterative process.

The same reference surface is further used for the unsteady flow

conditions, since the unsteady onset velocities being small compared

to steady state velocities can be considered as perturbation without

running the risk of violating the basic requirements of the linearized

theory.

2
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ANALYSIS

1) Integral Equation

A theory and computer program have been developed for the case

of a lightly loaded propeller utilizing the small perturbation approxi-

mation by selecting as a reference surface the helicoidal surface of
itU 217 h r U =s i

"zero lift" with constant pitch (i.e., P = 2U =-
(i~~e., 2 t~ where U = ship

speed and 1 = propeller rotational velocity). However, many propellers

operate in strong wakes and at lower relative inflow velocities resulting

in larger deviation from the reference surface hitherto employed. These large

excursions violate the requirement of the small perturbation theory.

A new analysis is developed herein along the same general

lines as the small perturbation theory but with emphasis on the

selection of a more appropriate reference surface which simulates closely

the actual propeller operational conditions.

The linearized unsteady lifting surface theory for a marine pro-

peller, with its blades lying on a helicoidal surface and operating in

the nonuniform flow of an incompressible ideal fluid, is formulated by

means of acceleration potential method. It is based not only on a small

perturbation approximation but, also, on the assumptions that the pro-

peller blades are thin and operate without cavitation and flow separation.

It may now be considered, more appropriately, that this propeller

operates in a spatially varying flow generated by a strong hull wake

and also under the influence of self-induction. Both these factors

will influence the selection of the proper reference surface in the

steady state flow conditions. It is assumed that the flow field in

which the propeller is immersed has velocity components given in cylindri-

cal coordinates by

UA(r) + ui(xr); vi(xr); wi(x,r) (l)

14 l I I I i I m l l
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where UA(r) is the local speed of advance and ui, vj, w i are the

axial, tangential and radial components of the perturbation velocities.

The relation between the velocity potential function 0 and

the acceleration potential function * has been established by solving

the linearized Euler equation of motion to obtain

O(xr~tp~t) x 4r('t,r,cp;t - ) dT (2)
U(r) _ U(r)

where U(r) = Utor) = UA(r) + ui(o,r) the axial component of the

resulting velocity at the propeller plane.

It is further known that the pressure field generated by a

lifting surface S is given by distributed doublets with axis parallel

to the local normal and with strength equal to the pressure jump across

the surface. The reference surface over which the doublets are dis-

tributed is a helicoidal surface with variable pitch along the radius.

These facts considered with Equation (2) lead (following Reference 1)

to an integral equation which relates the known onset velocities

with the unknown blade loading at each frequency q:

v(qr)e- i q% 0 Is Ap(q)( F, pP o) K( r,cp;p,8o;q)dS (3)

S

where the kernel function is given by

N "iq n X x iqa( r (- x)
K( r,.;pe; 1 limrn_,oE e e

°;rpfU(r) n=1 -=

7n-R) dT (4)

Here

a Or + vi(r)a(r) --
U A(r) + ui(r)

5
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0 =angular propeller velocity

UA(r) = speed of advance at the propeller plane at
radial location r

8-'0 means x - ,/a(r) and /eJa(p)
n = 2TT(n-l)/N n = 1,2...N
n

N = number of blades

R = Descartes distance between the control point (xr,0o)

and loading point (,p,eo) = (-2+r2+p2-2rpcoS(oo-a( r ) ( x )  21

P a -p ---
,/I + a2(p)p2  p 0

and

1n- + a2 (r)r 2  a x r 2 (40

are the normal derivatives at the loading and control point, respectively.

It should be noted that the time factor has been eliminated from both

sides of Eq. (3) and it is understood that only the rea 1 pa rt of

the solution is retained. A limiting process is introduced in the

kernel function to avoid the mathematical difficulty due to the presence

of a high order singularity. The kernel function being one of the most

complex in the lifting surface theory, attention is given to the numeri-

cal solution of the integral equation by means of a high-speed digital

computer. The analysis, however, has been carried out to the stage where

laborious computations can be efficiently performed by the numerical

procedure.

It has been assumed that the shape of the chordwise loading is

the same as has been shown by Landahl to be the appropriate one in

a two-dimensional flow. Furthermore, a method called the "generalized

lift operator" technique 3  is applied to both sides of the integral

equation to reduce the surface integral equation to a line integral

equation along the propeller radius. Then by the collocation method

6
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the line integral equation is reduced to a set of algebraic equations

in the unknown spanwise loading distribution.

The following substitutions are made in Equations 3 and 4:

t L q)p, 80) = Ap .)  ( ,, . o'0) •pe p  ib/ft

=a P P cos e 0 5 e T80  - b
r r

o= r - ab cospot 0 !5p 1 T"

and the expansion of the inverse Descartes distance is

I Go im[eo-CP4n-a(r)(,r-x)] -
i ( - fl k

R e e 1 p)Km(Ikir)e dk
M= - _ -O

for p < r (otherwise p and r in the modified Bessel functions must

be interchanged). Here a is the propeller skewness (the angular posi-

tion of the midchord line from the generator line through the hub in

the projected propeller plane), 6b is the subtended angle of the pro-

jected blade semichord, G0o and Cp1 are angular chordwise locations of

the loading and control points, respectively, and the superscripts p

and r refer to the values at the loading and control points, respectively.

After the chordwise integration and application of the lift-

operator, the integral Eq. (3) reduces to:

v(q)(r ) ei r i() nmaxr)e-iqr) S L' (q' )(p)R(m n)(r,p;q)dp (5)

UA(r) b n=l p

7
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and

R(m,rn) N r -: - iqAc

4T pfUA(r)U(r) a(p)[l+a2( r) 23 m=- O e
f mn-q+.eN

i AN( l- a

{fe a2 (r)N+ - a(p)a(r)2N+ .- l ~m)(qe),,n) (q+( - a(r ) b)eN 8
Sr 2 

- p2 ap b

. Im(a(r)IlNIP) Km(a(r)IlNIr)

i ( r ap

- N ik(eka7 - a) I m(IkIp)Km (Iklr)--e f'(~~+m (a(p)k +. ) em

IT r 2  p2  k-a( r)YN

i ((M- - k)eb) A((m- k- )OP) dk}. (6)

and Aa a r -P

Here
TT iy cos 0

m(y = S (m-) e' dcp
0T0

and

T' -izcosB

An(z) S j S(r) e o sineo dBe
0

the details of which are presented in Appendix A.

The integral equation (5) is solved numerically by the usual

collocation method with the loading L (q,;l(P) assumed to be constant

over each small radial strip. Then only the kernel needs to be inte-

grated over the radial strip.

8
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Reference I gives details of the analytical development and

the different numerical procedures used to obtain the finite contri-

butions of the Cauchy-type singularity of the k-integral at k = a(r).

(m - q) and of the higher-order Hadamard-type singularity when p = r.

2) Chordwise Modes
t

The proper selection of chordwise modes is dictated by the

loading distribution on a foil in two-dimensional flow conditions.

The same chordwise modes have been selected as those of Reference 2

a) Unsteady flow conditions

The unknown chordwise modes are approximated by the known

Birnbaum distribution which has the proper leading edge singularity

and satisfies the Kutta condition at the trailing edge.

nmax

L (q)(p,eQ = _E L(q'n)(p) e(;)
n=l

n max
L (q,l ( p)cot 

E  L (q n)(p)sin(n-1)e=T 2 -
n=2

(7)

b) Steady state flow conditions

The unknown chordwise mode shapes are selected to conform

to the observed pressure distribution on the NACA foil sections.

i) The NACA-a mean line at the design condition

The section has a constant loading distribution from

" o at the leading edge to = a (a varying from 0 to 1; x = location
C c
of points along the chord and c = chord length) and then decreases

linearly to zero at x = I, the trailing edge. This type is designated
c

as "roof-top" loading and the distribution is given by

,(p)(O,]) 0 S x

L(o)(p,e) = L(O1I)(p)e(l) =/ • -• (8)

1-a

9

I_ x r
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with the corresponding A(1)(z) given in Appendix A.

ii) For any other sections such as NACA mean lines of the

4- and 5-digit wing series, including the lenticular mean line, and

arbitrary mean lines in general the distribution is

nmax

L(°)(P, ) = 1 , L(°'n)(p) e(n)
n=I1

;max

1 L~' 1( p)cot Got** + E n=2(~ i(- 9

iii) Off-design flow condition

If the solution of the integral equation at the design

flow condition is known, (Jd = advance ratio at the design condition)

then the off-design condition can be obtained through the input arrange-

ment. In the steady state flow conditions at off-design advance ratio

Jod' the propeller is subjected to a change in angle of attack due to

AJ = Jod Jd' The additional loading due to this additional change

of angle of attack will be obtained by utilizing as chordwise loading

distribution the first term of the Birnbaum distribution, i.e.,
0

L(°)(p,e) L(°) (p) cot O (10)

If, however, the information on the design flow condition is

not available then the general form of the Birnbaum distribution

should be used for the chordwise loading distribution

L(O)(p,e) = 2. I(O'I)(p) cot - - + . L n)(p)sin(-l)e

10I
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3) Perturbation Velocity Distributions

The left-hand side of the integral equation represents the normal

component of the velocity perturbations from the basic flow due to non-

uniformity of the flow (wake), to blade camber, non-planar blade thickness

and the incident flow ang!e in the design conditions and to an addi-

tional flow angle in the off-design condition arising from the difference

between off-design and design advance ratios.

a) Normal velocity due to wake

The normal component of the wake velocity along the middle

chord of each radial strip is given by(cf Reference 2 )

For q = 0

VN( r) VL(r) V T (r)
077= L cose p(r) - sinep(r)

where

VL(r) Vx(r)

Vx(r)

UA = measured axial velocity normalized with respect
to the speed of advance

VT(r)
UA = measured tangential velocity normalized with respect

to the speed of advance

e = blade pitch angle = tan-
I P(r)

p 2r

For a single screw ship V(O) = 0 and taking Vr) (r) then

Vo)(r) 0

UA( r)

Thus there is no wake distribution in the steady state case when the

reference surface is selected on the basis of the velocity of advance.

I1
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For q 0

The input to the program is

V (q)
N aq(r) cosep(r) - A (r) sine (r)

7 F q p q p
A R

) r) bq(r o aOr) (r) sine (r) (12)
A I

where R and I represent the real and imaginary parts. The coeffi-

cients a, b, A and B are obtained from the harmonic analysis of the

wake survey:

Vx(r)

( r q - l[a (r) cosqa + b q(r) sinqe ]
UA q-.lqq

V(r)VT

U- ) = Z: [A (r) cosqG + B (r) sinqO]
UA q=lqq

The same sign convention as in Reference 2 has been utilized. The

positive 0 is defined in the counterclockwise direction from 6 = 0

at the upright position of the blade. The axial component Vx is

positive downstream and tangential component VT is positive in the

counterclockwise direction looking upstream.

b) Normal velocity due to blade camber

The velocity Vc normal to the blade in the negative direction

induced by the flow disturbance caused by blade camber is given by

V(°)(r) /i+a 2(r) r2 
bfc( r~s)

UA(r) C(r) bs

2l+a-( r)r2 bf (r,°) (13)

C( r)s i ncp acp

12
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where

bftC(r,s)
Brs) =slope of the camber line fC(rs) measured from the

face pitch line

s = 2(l-cosp%) chordwise location non-dmensional ized on the

basis of C(r)

C(r) = chord in feet

aA(r) = Qr/UA(r)

On applying the lift-operator to the above expression, then

(0)( r) 2v/1+a2(r)r 2  T1 3f dcp
C A S § )MC (4

UA(r) TTC(r) 0 & sn- n(1

where I (n) = lift operator defined in Appendix A.

The integration is done as in Reference 4. In the small range

near the leading edge 0 < p Scos- (0.9) or 0 ! s < 0.05 the camber-

line is assumed to be parabolic and in the range cos'' (-.8) : y a:r T1

or 0.90 < s < 1.0 near the trailing edge, the camberline is assumed

to be straight line. The integration is done analytically in these

regions and numerically over the remainder of the chord.

c) Normal velocity due to "non-planar" blade thickness

The thickness of propeller blades describing a helicoidal

surface or non-planar surface generates a velocity field on the blade

itself and consequently, affects the loading distribution in the

steady state.

Resorting to the "thin body" approximation, the velocity potential

0'. due to the blade thickness of an N-blade propeller is given by

N M(,p, eo) ,/l+a'( p)p 2

0 (x, r,£0o) - E 0~ A'  R.~ pdpdo (15)
n=- p RaA(P)P o

13
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where

M( ,Pe ) =2UA(P) jl+a2(p)p
2  6 1(ps ) 

9

=2UA(p) f( P, e)

fT( ,peo) = thickness distribution over one side of the blade

section at radial position p in the propeller plane.
I

R : + r2 + p2 - 2rp cos(O -CP0 + n)]2

2T=n-l) I n = 1,2 ... N
n N

0 cp 0 = angular position of the loading and control points,

respectively, from the reference line (see Figure 1)

The corresponding normal velocity component is given by

V ( )(r) _ I (x,rcp 0  (16)

UA(r) UA(r) an'

The application of the lift operator after the use of the

transformat ions

'A-Po) (,r _ or costp)/aA ( r)  0 :5 cp:-T

-aAT) -b C1~"''

- 0 (up - e p cose )/aA(P) 0 0 < T

aAP bAP r

and the expansion of 1//R in a series yields (see Appendix B)

V O)(r) 2 Nr UA(p)./l+a(p)p '

UA(r) = 2UA (r)jl+a2 (r) r2 P

aA ( r ) u I O ( u p ) KO ( u r ) L l m . Pa r t " b()lU aA(r))A(ue p / aA(p)eiu( r /aA(r)/aA( ))}Tdu

0

+ 0 ILN(up)K N(ur) [G(u,.) + G(u,-t.)]du (17)

14
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where

G (u, £)=aA (r)u+ -N. m. Pa rtI a ((aAr)eN-u e / a (r))A((u-aA (p)N)b

e i LN ( rCaP) e hiu(r/aA(r) oP/aA(p,)]

and

T8 fT ixcosGa

*A(x) e dO dGY

which can be evaluated once the thickness distribution f(T) is supplied.

For any propeller the blade semi-thickness distribution in the

projected plane can be approximated by (see Reference 2)

P t o(P) - 4
fT(Pe) 2pe p() sin + cFp Lao(p) + 7, an(p)cos ne } (18)

where f T and p are fractions of propeller radius r

pO(p) = ratio of leading edge radius to chord length C(p)

at given radial position

tJC = ratio of maximum thickness to chord at that radial

position

The coefficients a0(p) and an(p) are determined from the equivalent

fourth order polynomial in x by the "least squares" method as shown

in Reference 2 .

d) Normal velocity due to flow angle.

The incident flow angle has been defined as the difference
- P(r)between the geometric pitch angle e (r) = tan and the hydro-

dynamic pitch angle r) = tan - a r/ of the reference helicoidal

surface. The normal velocity due to this effect is then given by

15
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V4°)(r)
=- + a2 (r)r2-6e(r)-tan-

UA( r) aA Jr

which after the application of the lift operator becomes

(O'i) A - 1 A /I + a2( r) r2 ( tan 1 ~-5  )for m= for 2

f (19)
UA(r) 0 for m > 2

since I(l)(o) = 1(2)(0)= i and I(Fn)(0) = 0 for m > 2.

At off-design advance ratio Jod' the propeller is subjected to

a change in angle of attack due to 6J = J od - J d" The normal velocity

perturbation due to this change in angle of attack is given by

dVf - '1l + a2d(r)r 2  9 (r) - tan -I  dl

od(r) LU odF)

+ I + a2(r)r2 L.p(r) - tan -;-F idr) (20)
dd pr UOd( r)

for m = I and 2.

Uod(r) = local speed of advance in off-design condition

Ud (r) = local speed of advance at design condition

The values of Uod(r) and the corresponding aod(r) are deter-

mined based on the assumption that the propeller operates in all

conditions, design and off design, in the same disturbed fluid field

responding with different propeller performance characteristics. The

change of value of advance ratio at off-design condition is assumed

due to change of speed of advance at constant RPM according to

[UA(r)]od _[OA(r)]od Jod

[UA( r)]d [OA(r)]d Jd

16
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from which

[UJ(r)] od [UA(r (21)
A od = d A-)---

where UA(r) and UA(r) are the local speed of advance and its

volumetric mean value, respectively. Then by making use cf the

definition of the advance ratio

Q~r 0 r 0Jd

a(r) 0 o
od [UA( r)]od [UA( r)]d Jod

the advance ratio at off-design condition is given by

a(r) = a(r) Jd (22)
od d Jod

The normal velocity due to change of angle of attack at off-design

condition (AJ = Jod - Jd) can now be determined. Then the additional

blade loading AL(o) is calculated through the integral equation (5).
od

4. Blade Pressure Distribution

The integral equation (5) can be solved successively by imposing

boundary conditions given in Section 3 of the Analysis. Then the span-

wise loading distribution is determined by

L(q)(r) T J L(q)(rO sine dO

0 0
r nmax

=S 7 L(q'n)(r) e(n) sine1 dGa (23)
o n=l

For the unsteady loading due to wake (q o), the complete

Birnbaum series is used for the chordwise loading distribution. Thus

nmax ,
L(q)(r) (q l) (r)(+cos )o+) + r n( n-)0

o n=2

sinej}de.= L(q'l)(r) + L (q,2)(r) (24)

17
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For the steady state loading due to AJ in the off-design condition

the spanwise distribution is obtained by the first term of Eq. 24.

In the case of NACA-a mean line blade sections, vith "roof-top"

blade loading distribution:

L(O'1)(r) 0 e < cos-(I - 2a)L( O)(r)

]+Cosae
L(O11)(r )  1c Cos-1(-2;) < e <

The spanwise loading is given by

x

L(O)(r) = L(OI)(r){ S sine ode : + I (l+cose)sine dj'o 2(1-a) X

= L(O'l)(r) (;+l) (25)

where

X cos-I(l - 2a)

For any other arbitrary mean line, the spanwise loading distri-

bution is derived from Equation (24) for q = 0

TT nm Qx

0n n
L(° )r) = S1¢L(0' I)( r)( I+cOS9t ) + Z. L(°,n)(r)sin(;_l)O~ sine ld6

0 n=2

= L(O'1)(r) + - LO'2(r) (26)

Whenever the cotangent Birnbaum mode is used, the Van Dyke orS6
Lighthill correction is applied to the chordwise pressure distribution

to remove the physically unrealizable leading edge singularity.

Their simple rule for obtaining a uniformly valid solution is

- SP S + pOJ2 P

18
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where

C pressure coefficient according to first-order thinp
airfoil theory

S chordwise location from the leading edge in fraction of

chord length

Po leading edge radius of the profile in fraction of chord

length

The modified chordwise loading distribution is then

(l/ -cose 6 , tq,l) e
(q)(rq 0) = ]-+osCOa, (q, r)cot 2 Z + (q,;l)(r) sin(n-l)0G

(28)

Since the pressure near the leading edge is governed by the

first term, the location of the maximum pressure near the leading edge

is determined by

d (. si

dO \e I + P - cose j 0

which yields

cos =
l+ P

This is the choruwise location of a point where the maximum pressure

near the leading edge will occur after the application of the leading

edge correction, provided p < .015, otherwise the sine series will

influence the location of maximum pressure near the leading edge.

19
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ITERATIVE PROCEDURE

As was noted earlier, a propeller operating behind a hull is subjected

to the effect of a hull wake of varying intensity (weak to strong) and it is

also influenced by its self-induction. The former can be taken into account

by a harmonic analysis of the wake, as has been done before; the latter, self-

induction, however, depends on a priori knowledge of the propeller loading

which requires that the reference surface be established in advance.

The harmonic content of the wake based on the local speed of advance

is used as the inflow to the propeller. The wake intensities may be quite

strong and even of the same order of magnitude as the free stream velocity

(ship speed). These velocities cannot be considered as perturbations and,

thus, a strictly linearized theory is no longer valid. Second-order terms

cannot be ignored as small quantities. However, second order theory (nonlinear

theory) cannot be easily developed so as to lead to a manageable numerical ap-

proach. An iterative procedure is established based on a combination of the

nonlinear form of the Bernoulli equation with a kinematic boundary condition

existing at the designed operational condition for the selection of the refer-

ence helicoidal surface around which a perturbation theory will be developed.

A flow field closer to the propeller operating condition is achieved and thus

the requirement of the small perturbation quantities will be reinforced. This

approach is applicable to moderately to heavily loaded propellers immersed

in a strong wake.

1) The Bernoulli Equation

For a moderately loaded propeller operating in a steady inflow field

whose velocity components in the axial, tangential and radial directions are

given by

UA(r) + , r + V 1 + 0
A ox T r ' r ar

respectively, the Bernoulli equation for a point (x,r,y) in the field becomes

Po(x, r,cp) +- (UA+ ao 2 I 2 2

P f L AT2) +(~+T_ rL 2) + Wr+ Z-) ]
= + L +(ra+ VTWJ (29)
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where

PO is the mean local pressure

UA = local speed of advance

= the flow velocity potential function0

and VT and WR = mean wake velocity in the tangential and radial directions,
respectively.

The rest of the symbols are as defined previously.

It is assumed that for mean ship wake flow

VT = 0 (Always true for a single screw)
To

and W = 0 and 7 = 0 (no radial variation is taken into account)
Rr

and reference pressure p, = 0.

Thus, Eq.(29) yields

- 41aIo\ 2 -1 - ao 2 PLUA~ ~ ~ r + + 1 -L+-r  --2 ]- = 2- - -2 (x,r,y)

which includes the second order terms, or

oU+K=)!7- -rn - 1 . 0 (x,r,cp) (30)

For a coordinate system fixed in space and for a right-handed propeller rotating

with angular velocity Q,

= -Q t

Thus, the above equation becomes

LUA . + rQ- 1 . l , .o _) - (r,) (31)

Letting

A(x,r,y) = U + 0

-t 
(32)

B(x, r, y) = Lr - )
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Eq.(31) is written as

p
A 0 + B to . (x,r;t) = (x,r;t) (33)

where
p (x,r;t)

4(x,r;t) 0 = acceleration potential function.
Pf

The formal solution of the differential Eq.(33) is obtained by the method

of characteristics provided the coefficients A and B are known constants.

This present scheme is also used as a means to introduce the propeller

induction. Identifying the propeller-induced velocity in the axial and

tangential directions by

0
o u (x,r;t)

and

-T = v.(xr;t)

respectively, the coefficients of differential equation (33) become:

A(x,r;t) = UA + I ui

(34)B(x, r;t) = L Lr Q+ I Vi

These induced velocities can now be approximately evaluated by taking one-

half of the corresponding values at infinity (well-known results from the

momentum theory). The steady induced velocities in the far field can easily

be calculated once the propeller loading is known. In fact, in Reference 7

it is shown that the steady axial velocity at x-- in uniform flow is given by

-N max r A(n)(o 09) (r) (35)

i 2 pfr

where all the symbols are as previously defined and linear dimensions are non-

dimensionalized with respect to propeller radius.

it can be further shown 7 that the steady tangential velocity in the far
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fiel d can be expressed in terms of the axial induced velocity by

vi(x,r;t) L - u (xr;t)

thus the coefficients (Eq.34) become:

A(x,r;t) = UA + i ui(x,r;t)

- a _ ui(x'r;t)a (36)
(x, r; tx= rrt)7

r2 ar

which incorporate the propeller speed of advance and the propeller induction,

both of which are considered to vary radially.

As will be seen later, once the potential function o(x,r;t) is
determined at a stage of the development, the blade loadings can be evaluated

and hence the propeller induction effects as well as any other flow charac-

teristics can be calculated. The coefficientsgiven by Eq.(36) are considered

to be known at that stage, and hence the differential equation

A(x,r;t) Y + B(x,r;t) T2 = j(x,r;t) (37)

(see Eq.33) can now be solved by the method of characteristics provided that
A and B are determined at x=O(at the propeller plane),i.e.,they are speci-
fiable constants. The characteristics are deduced from

dx dt

which, upon integration, yields

Bx - At = constant

Letting

= Bx - At

= x(38)

then

T= ~x F; +x + = B

= § a + A a

Multiplying the above relations by A and B, respectively, and substituting
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the results into Eq.(37) yields

A 
=

which upon integration becomes

0(x,r;t) = k f[T,r; A(B - dT

Making use of the relations given by Eq.(38), the above solution can be

written as

l(xr;t) x f{,r;t (x-T)]dT (39)

This is of the same structure as the existing relation between the velocity

and acceleration potentials for the case of a lightly loaded propeller, which

was the subject of the previous study.2

The above relation indicates that the solution I (x,r;t) for the

velocity potential is obtained through the so-called "History Integral"

of the corresponding acceleration potential where the time is shifted by the

amount 1 (x-T). Thus, the term involving the "time element" becomes

t ui(xr;t)
- -T = Ot 2 1- (40)

L r LUA+ ui(x,r;t)]

where all the linear quantities are expressed in a non-dimensional form in

terms of the propeller radius r . Thus, the "inverse advance ratio"Qr0
ar-:j-.which was introduced in the study of the lightly loaded propeller 2

is defined in the present study by

Ir r - I .L
o 2 araer = I(Lfl)

U +- ui
A 2

which will be called an "effective inverse advance ratio.'

It is shown, therefore, that the present problem with propeller

exposed to the advance speed and influenced by its self-induction admits of

the same formal solution as in reference 2. The same mechanics can be

utilized as before, provided the coefficients of the differential Eq.(33)

are known. This can be achieved by introducing an iterative procedure.
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2) Iterations

At first it is assumed that the induction effects are omitted (i.e.,

u!l)=O , v ')=o), so that the coefficients A(x,r;t) and B(x,r;t) become

A(I)(o,r;t) = UA(r)

B(1 )  = I

both known quantities, in which case the solution yields

A -0

which is identical to that of a "lightly loaded" propeller2 except that the

present solution incorporates a radial variation in the inflow field. The

variation does not introduce any additional complication since the problem

is solved by dividing the lifting surface into radial strips with specified

inflow field at each radius.

Knowing the velocity potential (1)(xr;t) and the "effective in-

verse advance ratio" a(1)= L =1 (n = the propeller RPS and aI) = a),
e UA UA e

through the existing'machinery'(analysis and program) the steady state blade

loading L()(r) is determined (subscript refers to the order of

iteration). Then the induction effects u.2)(0,r;t) are calculated through

Eq.(35). A new set of coefficients A(2)(O,r;t) and B 2 (O,r;t) are determined

through Eq.(3 6).

With these new coefficients, a new solution 1(2)(x,r;t) is established:0

(2)(xr;t) = 1 y(2) T,r't - (x-_))d

A -00 A 2  x-)d

With "effective inverse advance ratio"

u(2)
Wr r - I I

(2) o T a 0 )r
e re

A 2 i

the new loading L (0,A) (r) and inductions u( are calculated, and thus
(2)
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establish the new coefficients A(3)(O,r;t) and B(3 )(o,r;t). At that

stage the new iteration begins.

The results of the jth iteration are presented in the following

table:

Coefficients AM = UA + i a oB(J)[2r r-, I i I

e

(j) (j)
"Effective l a (1) I i

"rr -a a r e r -2a--U
inverse a) 2 ae r
advance e 1 (j)
coefficient" rLUA + 2 i I

+ UA

Solution of 0 (x,r;t) I 0 T, B M (x-T)dT
d.e. A_ Ao

Steady- (J) - N max n ( j ) (r)

induction i 2PfUr r

This iterative procedure will continue until the potential function (x,r;t)
or, more conveniently, the "effective inverse advance coefficient" ate ) , does

not vary in two consecutive iterations. With the final value of ae )" , the

reference helicoidal surface is established and this will be used as the basic

information for the calculations of the steady and unsteady blade loading and

hydrodynamic forces and moments.

It is clear that the number of required iterations depend to a

great extent on how close the initial value of the "effective inverse advance

coefficient" a( I) is to its final value. A simplified procedure is given below.
e

It is known that the pitch of a well designed "1wake-adapted propeller"

nearly satisfies the following "kinematic condition"
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UA + u. = (0 r + vi)tane

= ( 2 r - -tanOar p

from which the axial induction .s

u. ( rtane -UA) ar (42)ui ( r a op - ) a r + tan6
P

where e is the propeller pitch angle.p

From Eq.(41) the axial induction is determined as

u. = 2(rQ - arUA) a r (43)A + a r2

which is considered to be the result of the "dynamic condition" since

Eq.(41) is derived from the Bernoulli equation.

Combining the "kinematic" (Eq.42) and "dynamic" (Eq. 43) conditions,

yields

E a2r 2 - 2D ar -. E = 0 (44)

whose solution leads to

ar + (45)

E

where
D = ir- UA tan9

E = ir tanG + UA

With the initial value of a obtained from Eq.(45), the iterative procedure,e

described above, starts. It is seen from the numerical calculations that

this approach has reduced the number of iterations considerably, by 50 percent.

Once the reference helicoidal surface is established and the "effective

inverse advance coefficient" ae  is determined, the numerical procedure

becomes identical to that developed previously in Reference 2 for the steady

and unsteady flow conditions.
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PRESSURES, HYDRODYNAMIC FORCES AND MOMENTS,
AND BLADE BENDING MOMENTS

1) Blade Pressure Distribution on Each Blade Face

In the preceding sections the pressure difference p (q)(r), at a given

radial position r and frequency q , between back (suction) and front (pres-

sure) faces of the blade surface is determined. On the suction side of the

pressure due to loading is +L p (q) (r)/2; on the pressure side it is - p~q)(r)/2.

In addition, a non-lifting pressure P is generated due to the sym-

metrical "flow distortion" thickness effect which will be present only in the

steady state since the blade is considered to be rigid. PT is derived in

Appendix C by means of the "thin body" approximation (see Reference 8).

The instantaneous pressure is the sum of the blade pressures due to all

frequencies contributing significantly. On the pressure or suction face,

when the blade swings around its shaft in the clockwise direction from its up-

right position %12M), it is

Pp's(r) = Re Z P(q)(r) e - i q  = Z p(q)(r)1cos(q-yq) (46)
q=o q=o q

where

((q))
q = phase angle = tan-1 ( )Im

q (q),
p,s Re

(the subscripts Re and Im indicate the real and imaginary parts) and S

is blade angular position, positive in the counterclockwise direction

as is yq '

2) Propeller-Generated Forces and Moments

The principal components of the hydrodynamic forces and moments are

shown in Figure 2 with the sign convention adopted. The total forces at fre-

quency £N(L=Ol,2...).induced by an N-bladed propeller are determined as

(see Reference 2):
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F Re {Nr e L (N)(r)cosa (r)dr}
0

F Re eU, ( -II ) (r)A ( r) +L n ) (r)A (n)
0 _b b

n=1

sinO Pr)dr)
P

- N r 1 n- )
{ Re e iNt fY IL(N-1 ,n) (,),(n) (_h)- L(I ,n) (r)A (n (,r),

2i b b
n= 1

sine (r)dr} (47a)
P

The moments are determined by:

-R (r 2 iZ.N~t (E.N)
Qx = e-Re fNr 2 e j L (r)sina (r)rdrl

Nr2  I r -
Qy Re {2 eiZN~t f { [L(N-l' n)(r)A(n) (-Ob) + L ( +In)(r)A (a)jCos r)

0 n=

+ [ (ZN-In) (r)A6) (_or)L(%N+In)(04 1 (Gr)] Ci r) s i nO(r) tane (r) lrdr}
1 b 1 b b p p

n=l

- r2 [NQt ,n) )Q -- - e [ (r)A r -b (,N (r)An )eb p (r)

0 -

+ I [(ZtN-I a)(r)A~n) (-l r"4( 'N+1 a(r)A~n(o )1 (i9n) sinGp(r) tanGp(r) 1rdr}

n= I
(47b)

where A (Z) and A (z) are as defined in Appendix A.

It is seen from Eqs. (47a,b) that the transverse bearing forces

and bending moments are evaluated from propeller loading components L(q'n)(r)

associated with wake harnonics at frequencies adjacent to blade frequency,

i.e. at q =Z +N , whereas the thrust and torque are determined from the
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loading L (q)(r) at blade frequency q=LN At L=O (steady-state), the

mean transverse forces and Lending moments are determined at shaft fre-

quency. Thus:

Nr 1 (l,n) (n)(b)]sn (r)dr}
F Re {- L (r)A b ]sinP

n=l

ReNHr 1 L (I n) (n)(er) (r)dr}
Re f o= -f X L (r)A i p

n=

Nr 2 1 ~
Q Re 2" [ f Ln(r)A (Or) cos (r)-

y 2 0 p

(I ' L (1 )A n)e ),r~n (r)tanO (r)rdr)

n=l

NR 2 1 l n
Rz e (oi f L (r)A () Cose r) -

Re2ij{L 0 b

L( ~ ' n ) (r) r~) (iAC ) r B) sine (r) tanip (r) }rdr) (4b70c

b b b P p
n~ I

All forces and moments can be written in the form

R IC iCpq e- = c(q)cos(-qO+ q C(q)cos(q0 q

where 0 is blade ancular position, ccsit' e -n t-c cortc-Zoc.,.se

di.eetion from zero at the upright position (12M), q is order of shaft
frequecy, C(q)

frequency, C is magnitude of force or moment, and yq is phase angle

(electrical) determined as the angle w'hose tanccnt is the im.aginary part

(sine part) over the real part (cosine paot). (The program output gives

(q)C and r;. )
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When yq is positive, the peak (or trough) of C(q) is to the left of

the upright position, i.e., leads; when yq is negative, the peak (or trough)

is to the right of the upright position and lags that of input.

In Reference 2, as a first attempt at estimating the frictional con-
tribution to thrust F and torque QX, use was made of the Prandtl-Schlichting

formula for the friction coefficient for one side of a smooth flat plate as
9.

was suggested by Hoerner. The present study follows Reference 2 in this

matter with this exception: in the formulas for friction coefficient and

frictional thrust and torque, the inverse advance ratio is no longer

a = 1ro/U, based on forward speed of the ship and constant over the propel-

ler span, but aA(r) = Or/UA(r), based on local speed of advance and varying

with radial position.

3) Blade Bending Moments

The blade bending moment about the face pitch line at any radius r

of a blade is calculated from the chordwise integrated loading (spanwise

component) L q)(r) at any shaft frequency q as

Mq) e iqC2t = r2 eiqnt I L(q) (r)cs [0 (r)-9 (r.)](r-r.)dr (48)
Mb e r i P t

r.
J

The positive blade bending moment about the face pitch line is that which

puts the face of the blade in compression.

The instantaneous blade bending moment distribution when the propeller

swings aro,ind its shaft in the clockwise direction is

Mb = Re 2Mq e- iq O = E Im qcos(qo - yq) (49)
q q

where yq is the phase angle (electrical).

It should be noted that in the program the value of r. of Eq.( 48 ) isJ
limited to any of the midpoints of the radial strips into which the blade

span is divided, at which points the pitch angles, as well as other geomet-

rical characteristics, are given as input. The bending moment at any other

radial position can be obtained by interpolation or extrapolation.
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NUMERICAL RESULTS

The theoretical approach developed in the preceding sections for the

evaluation of the blade pressure distributions due to loading and thickness

effects and of the resulting forces and moments has been adapted to a high-

speed digital computer (CDC-6 6 00 or Cyber 176).

The numerical procedure has been applied to propellers of different

loading from light to moderate to heavy:

a) the DTNSRDC Propeller 4118 tested at DTNSRDC O ' "01ina) te DNSRD Prpellr 1118 estd atDTNRDC in screen wakes

(3-cycle and 4-cycle screens)

b) the Sharp Propeller V-3275 in the wake of ship model 4986 (s.S.

MICHIGAN), the wake survey and propeller geometry supplied by the U.S. Mari-

time Administration

c) the NSMB Propeller 4930 in the wake of ship model 4705, the wake

survey and propeller geometry supplied by Lloyd's Register of Shipping

The particulars are listed in Table I.

TABLE I

Propeller Designation DTNSRDC 4118 SHARP V-3275 NSMB 4930

Expanded Area Ratio, EAR 0.60 0.564 0.810

Pitch-Diameter Ratio, 1.077 1.080 0.757
P/D at 0.7 Radius

Skew, deg 0 11.5 30.0

Diameter, D, ft 1.0 22.5 6.837

No. of Blades,N 3 5 5

NACA a Meanline Section a = 0.8 a = 0.4 a = 0.7

RPM (= 60n) 900 106 213.6

Advance Ratio, J = U/nD 0.831 0.993 0.746

Free Stream Velocity, U, 12.465 39.50 18.158
ft/sec

Speed of Advance, UA, at 12.81 33.18 9.02
0.7 Radius,ft/sec
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Relevant geometric characteristics of the 3 propellers, namely, the ratios

of maximum camber to chord length, mx/c, of maximum thickness to chord,

t /c, of leading edge radius to chord, p0 of chord/diameter, c/D, and of0

pitch to diameter, P/D, are given in Tables 2-4.

TABLE 2. DTNSRDC PROPELLER 4118

Radius m x/C t /C Po c/D P/D

0.25 0.0228 0.090 0.00525 0.347 1.0S5

0.35 0.0231 0.068 0.00290 0.386 1.083

0.45 0.0224 0.052 0.00170 0.425 1.081

0.55 0.0212 0.040 0.00100 0.454 1.079

0.65 0.0203 0.031 0.00060 0.464 l.u7l

0.75 0.0198 0.024 0.00035 0.452 1.076

0.85 0.0189 0.018 0.00025 0.405 1.074

0.95 0.0174 0.016 0.00020 0.278 1.072

TABLE 3: SHARP PROPELLER V-3275

0.25 0.0553 0.232 0.059 0.166 1000

0.35 0.0445 0.166 0.030 0.200 1.032

0.45 0.0374 0.122 0.016 0.231 1.055

0.55 0.0321 0.094 0.0097 0.251 1.083

0.65 0.0268 0.073 0.0059 0.260 1.080

0.75 0.0218 0.056 0.0035 0.257 1.079

0.85 0.0174 0.042 0.0019 0.236 1.073

0.95 0.0138 0.031 0.0011 0.168 1.057

TABLE 4. NSMB PROPELLER 4930

0.232 0.0304 0.168 0.04087 0.234 0.729

0.335 0.0288 0.124 0.02238 0.268 0.750

0.437 0.0279 0.088 0.01210 0.308 0.754

0.539 0.0258 0.065 0.00680 0.343 0.758

0.642 0.0217 0.049 0.00309 0.364 0.759

0.744 0.0178 0.039 0.00183 0.366 0.754

0.847 0.0138 0.030 0.00162 0.343 0.741

0.949 0.0101 0.023 0.00175 0.264 0.724
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Mean wake information is presented in Table 5 as the ratio of speed

of advance, UAt to the free stream velocity, U, at 8 equidistant radial

positions between propeller hub and tip (see Tables 2-4).

TABLE 5. U A/U - RATIO OF SPEED OF ADVANCE TO FREE STREAM VELOCITY

Propeller DTNSRDC 4118 SHARP V-3275 NSMB 4930
Wake Screen Model 4986 Model 4705

U, ft/sec 12.465 39.50 18.158

Radial Position UA/U U A/U U A/U

I 0.970 0.599 0.207

2 0.969 0.678 0.285

3 0.984 0.747 0.354

4 1.009 0.800 0.407

5 1.026 0.829 0.452

6 1.028 0.844 0.527

7 1.026 0.848 0.655

8 1.025 0.852 0.791

DTNSRDC Propeller 4118

Results of calculations of the hydrodynamic forces and moments by

the present approach, as implemented by the PLEXVAN program, are presented

in Table 6 for the 3-bladed propeller 4118. The steady and blade-frequency

K coefficients are compared there with available experimental values, O and

with values obtained through the approach of Reference 2 by the PPEXACT

modified code.

Since the publication of Reference 2 the numerical procedure of the
PPEXACT program has been modified for greater accuracy of the chordwise
distributions.
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TABLE 6

DTNSRDC PROPELLER 4118

IN 3-CYCLE AND L-CYCLE SCREEN WAKES

CALCULATIONS EXPERIMENTAL
PLEXVAN Program PPEXACT Program Measurements

Coefficient Mag. Phase Mag. Phase Mag. Phase
deg deg deg

Mean

KT 0.166 180 0.166 180 0.154 180

KQ 0.0324 0 0.0323 0 0.0290 0

Blade
Frequency

KT 0.0735 - 22.9 0.0742 - 23.4 0.0685 -32

KQ 0.0126 157.2 0.0127 156.6 0.0102 135

KFy 0.0175 - 8.3 0.0162 - 8.9 0.0139 30

KQ 0.0124 - 24.5 0.0114 - 25.0 0.0109 30

KFz 0.0175 - 98.3 0.0162 - 98.9 0-0131 -67

KQ 0.0124 -114.5 0.0114 -115.0 0.0114 -67

Comparisons between the results of the two theoretical approaches for

the chordwise and spanwise distributions of pressure are graphically ex-

hibited in Figures 2 to 4.

It is seen that for this lightly loaded propeller with C = 8R /J1
2

T T A
approximately 0.6, there are only slight differences between the present

approach and that of Reference 2, as was expected.
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Sharp Propeller V-3275

Similar calculations have been performed for the Sharp 5-bladed pro-

peller V-3275. The results are shown in Table 7 and graphically in Figures

5-8. Also tabulated are some results obtained from Troost B-5 propeller

charts.

TABLE 7. SHARP PROPELLER V-3275 IN THE WAKE OF THE S.S. MICHIGAN

CALCULAT IONS
PLEXVAN Program PPEXACT Program TROOST B-5 Prop.

Coefficient Mag. Phase Mag. Phase Mag.
deg deg

Mean

KT 0.222 180 0.226 180 0.185

K 0.0400 0 0.0408 0 0.0325

KFy 0.0159 180 0.0171 180

KQy 0.0111 180 0.0118 180

KFz 0.0144 0 0.0159 0

,Qz 0.00983 0 0.0103 0

Blade
Frequency

KT 0.00635 177.8 0.00638 166.9

KQ 0.00108 - 2.1 0.00106 - 12.9

KFy 0.01265 -140.8 0.01171 -143.1

KQy 0.00842 -153.1 0.00777 -152.5

KFz 0.00442 - 75.2 0.00437 - 76.1

KQz 0.00274 - 74.7 0.00272 - 73.2

at JA = UA/nD at 0.7 radius

In this case, CT = 8 KT/nJA
2 is approximately 0.8. It is seen that

the hydrodynamic force and moment results of the present analytical approach

differ slightly from those of the PPEXACT modified program. The blade pres-

sure distribution of Figures 7 and 8 show larger differences between the

two methods.
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NSMB Propeller 4930

A comparison of results of the PPEXACT and PLEXVAN programs for this

5-bladed propeller is presented in Table 8 and Figures 9 to 11. The compu-

tations were performed for the steady-state case, q=0, only, since just the

mean wake velocity was supplied.

Both Davidson Laboratory sets of calculations were compared with the

results of the NSMB lifting-surface program which were provided in the

form of graphs of spanwise load distribution and chordwise pressure distri-

bution. The values of mean thrust, KT) and torque, ,Q. coefficients shown

in Table 8 for the NSMB program are derived from the spanwise loads.

This propeller with a C T4 is more heavily loaded than the other two

propellers and the results show larger differences when the two theoretical

approaches are compared.

TABLE 8. NSMB PROPELLER 4930 IN THE WAKE OF MODEL 4705

CALCULATI ONS TROOST
PLEXVAN PPEXACT NSMB B-5 PROP*

Mean Coefficient

KT -0.202 -0.216 -0.227 -0.20

KQ 0.0272 0.0294 0.0305 0.026

at JA UA/nD at 0.7 radius.
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CONCLUSIONS

A theory and corresponding computer program have been developed for

a marine propeller operating in non-uniform inflow by taking into account

the radially varying mean wake and mean propeller induction.

The helicoidal reference surface of radially varying pitch is

established through an iterative procedure by combining the non-linear

form of the Bernoulli equation with an appropriate kinematic condition ex-

isting at the design stage.

The numerical procedure furnishes information on the blade pressure

distribution, as well as the resulting hydrodynamic forces and moments in

the steady and unsteady flow conditions. The approach is valid for mod-

erately to heavily loaded propellers.

It is seen from this small number of calculations for propellers

with thrust coefficient CT varying between 0.6 and 4.0 that the dif-

ferences between steady and unsteady forces and moments calculated by the

present theory (coded as PLEXVAN) and the corresponding values determined

by the previous approach (coded as PPEXACT) are larger as CT  increases.

However, the differences between the results of both procedures are minor

even for the propeller operating under more heavily loaded conditions.

The PPEXACT method assumes the reference surface (along which the

shed vorticity is considered to be convected) to be a pure helicoid

whose local pitch is fixed by the joint action of the forward ship speed

and the blade tangential velocity at any radius. The difference between

the ship speed and the radially varying wake speed is taken as a pertur-

bation from this surface. On the other hand, in the present (PLEXVAN)

method to begin with the reference surface (based on the non-linear

form of the Bernoulli equation) takes into account the radially varying

mean wake and mean propeller induction.

it would appear that the two methods yield comparable results pro-

vided that the prescribed procedures are closely adhered to (e.g., in the

PPEXACT method the hydrodynamic pitch tan- (U/ra) must use U =ship speed).

The advantage of the PPEXACT program lies in its considerable saving of

computer time.
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If, however, greater accuracy in the evaluation of hydrodynamic

forces and moments is required and more precise blade pressure is needed,

then the program PLEXVAN must be exercised.

In the analysis performed in Reference 12 to evaluate the sensitivity

of various wake parameters, the hydrodynamic pitch angle 0 was found

to be the most critical one. A set of calculations for propellers with

360 skewness indicates that a decrease in 0 of 100 results in a decre-

ment of approximately 18% in KT (see Figure 11 of Reference 12). On the

other hand, the present calculations for the NSMB 4930 propeller with 300

skew indicate that with a decrease in 0 of 4.5° , there is a decrement

of approximately 7% in KT. The trend is shown in both cases to be about

the same. For a final assessment, more systematic calculations must be

performed and compared with corresponding measurements.
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APPENDIX A

Evaluation of the and e- Integrals of the Integral Equation (6)

T7 I

1) I)() = I $ ( Qo)eIYCO& d=I
0

i (2(Y) = I T (1-cos) eIYCO5 dzp J 0(y) - iJ (y)
0

1 V(1() =L $ (I+2cosp) e ~oq~ dcp0 J(y) + i2J l (y)

o0

(y Scos(-l)-cp eiycosq d9= i J (y)
o rn-I

where J (y) is the Bessel function of the first kind of order n and

argunent y

C)TI -izcosB

2) A( B) (z) = -e(n) e sin, de
0

a) Birnbaum distribution

A( I (z) = cot e izcosesine do = J ( - W
00

0
_in-2

= _2 [J_ (z) + J_(z)]2 n-2 n

b) "Roof-top" distribution (a mean lines)
-1

cos (1-2a) - izcos e

0

+, (+coCQ) -izcose
2(,_S) e sine d

cos (1-2a)

e i + 2(I-)z2e z - ei2z

(; > 1)(z) = 0

(fra jl() 2sinz(for , /A(1)(z) = 2siz and for z=O, A(1)(O)=I+a,)
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Functions Required for Evaluating the Integrandof the Kernel Function
at the Singularity (see Reference 2) and the Propeller-generated
Moments (see textj

m ycosy d
1) n (Y) = Z' o ) e cosd

1) 11
0

SO) (y) [Jo(Y) - J.2 (y)I + iJ (y)

(2) (y) =[J 0 (y) _ j 2 (y)] + iJI(y)
I

.m-2
(r>2)M i' f M + J ]-2 - J (y  M Y

m I-2

2) Am(z) C C(n) sinO cosO e- ' o dG
I

0

a) Birnbaum distribution

(A) 1 -1 J2 iA(n>) - W - W

1' 4 n-3 n+I

b) "Roof-top distribution (a mean lines)

-iz fi 1 + 1_ [ lJ-a - i) ei2azIl)(Z) 1 e e + C-a)" 2 z

+ (2+ )ei2z]}
(For a 1, A(1 )(z) = i (cos i Z---z )

It is to be noted that the values for negative arguiient, i.e.,
Wm (in) (ii) (5)I~ ) (-y) )I (-y), A (-z) and A, (-z), are the conjugates of the

values given above.
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APPENDIX B

Normal Velocity Due to "Nonplanar" Blade Thickness

The following substitutions are made in Equations (15) and (16) of the

text

dO = oPsinO dO0 b CeC
af T(§,P,0o )  aA(P) afT(p,O0)

6§ eps inOo cOo

b

Co im(O -cpo+On) O

Z; e S (IK)metu~x - )duR TT m=.a: 00

where

I m(ullp)Km(Iujr) for p < r
(1K)m = K Im(Julr)Km(ulp) 

for r < p

(r) a - 1 "T a--.- r ,ar Z 1 -L

\A T~- r YO
-a ( A  r r) r20
]A(r) r

N eIman= N for m=,eN, ,L 0,±], ±2, ..

Since L.. n , Equation (16)
n=l 0 otherwise

becomes

(o)
VT (r) iNr fT im(Oo-y o)

U" i U (P)V/I+a2"(p)P2

A 2TT2 U (r)/l+a2(r)r2 A=PN 0op1

KaA(r)u + )(IK)me i(x- )dudpd, (B-1)
.rar

With the trigonometric transformations for x, Yo, §, and 0 given in

the text, the series is brought to
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Go H af _im (ar_ap)
, S UA(p)I / l +a2(p)p2 - e

m=IN o p

. i(u(Arla(r ) - p / aA ( p ) )  i(u-aA(P)m)e cosao/aA(P)•'(a A r) u + 2)I K e e

-i(u-aA (r)m) Obcosy.,aA (r)
•e A b A dudpdO 01(B-2)

Let

T af i((u-aA (p)m)P/aA (P))cosO

A((u-aA(P)m)eP/aA(p))= S ;T e AAd@o?
A b A 0 Cv

and applying the generalized lift operator (see Appendix A)

(o)
V (0) (r)_ r

VT  (r) r 2 UA (p) l+aA2 (p)p 2

A 21 UA (rl4+aA(r) r2  P

CO e £ N ( Tr - 9 P )  a- iu (,r/A (r) -P/aA(p))
*Z e-"~~ j a A a(r)u +7)(IK)e u

CO r

* A( (u-aA (P)2,N)OP/aA (p) l(m)((aA (r)£N-u) er/aA (r))dudp (B-3)

It can readily be seen that folding the doubly infinite L-series and

u-integration yields Equation (17) of the text.
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APPENDIX C

Thickness Effects (Non-lifting)

The velocity potential due to source-sink distributions approximating

the symmetrical thickness distribution of an N-bladed propeller is given by

(x ry;0 - L :: a')d

- N n T S R a(p)p popb in6,,dO dp (C-l)
n=l 0op

where the source strength is

M~ps)f 2(()plas) fT (;,p, 0o)M(p,s) 
= 2U(P)1/i7a(p*p2 dfT s) = 2UA(P) af7(,PO0

A ( ~~ds UA a)

the Descartes distance R is

S ,2 r2 + p2 - 2rp
LlX- + cos\eo-q+5n ) j

s is measured along the chord of the blade section and the other symbols

are as defined in the text.

From Bernoulli's equation, the linearized pressure PT is

PT(x, rcp) = -PfUA(r) L + a(r) -

Hence
P f U A ( r) N , T p 0 ) - I

P (X,r,o )= - Z n_ o (P) a +a(r) - +a(p)pL sine d, dp
T '0 2-,T I~ SUA apa L - Op) bao

(C -2)

If use is made of the expansion

I I im(o°-Ypo+n) i(x-)k
R- R = e (IK) e dk

m=-CO Oo

where

OK) M = Im(IkIp)Km(Ik r) for p < r

) Im(Iklr)Km(IkIp) for r < p
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then
, im(eo - +o) ki(x-Z)

+ a(r) - - e -(k-a(r)m)(IK)me dk

(C-3)

S i nce

e /a(p) = (ap - OP Cosa )
0 b os9/l p

afT(,Pe 0 a(p) afT(P, (C-4)

- inO ae 0

Also

N im5n =N for m = 2N , I = 0, =I, =2,
n=1 =0 for m I N

On substituting Eqs.(C-3) - (C-5) in Eq.(B-2), the pressure becomes

P (xryp) iNPfUA(r) TT aS T (P,eo) a2 (P)p'UA(p)
c = 2TT2  o p o

y)(k-a (r) m) ( I K) me (~-kdk- pc-6)

M
= -

=
:

m=N

With the trigonometric transformations for e and y
0 0)

i TfUA~r)Y,, fAII fT do 01 1+ a2 (p)P2 UmA (P)e- bm Ce im(abC°Sz - b°c)
o 2112 m=-00 op U e

m=),N

r

ik ' o r  P ' ab b cos
" k-a(r)m)(IK)me i ( r) - - ) e -(r C a(p-, of)dkd4Cydc

(c-7)

The 0 2-integral is as before (see Eq.17 of text)

C2
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AK k-a pmc/a(p)) = -.- ~---- e e (c8

After folding the rn-series to m=0 to +c* , the pressure of Eq.(C-7) is

brought to

P T(x,ry 0 Nf) ~ r + 2PP U A(p)

I ar P ebr

J A( keb /a(p))kIK) 0e --( - -ap a____d

M* ii~~rm(ka~rm (Urco cp)/a ) -ia()m~ /k a(mTbp) )

+A((k+a(p)m) OP/a(p))(k+a(r)m)e e dk~dp

(C -9)

Let k-a(p)m=u in the first term and k+a(p)mu in the second term of the

second k-integral. Finally, Eq.(C-9) can be written (for p < r) as

P T (x,r,y) - Nf A I) SUA(P) "I+ a( p)p2

0 0up)(ur)LimPar tL'6/ap

M cc/~
+ L JSL'u -a(r)-a(p) )MjI m(Iu + a(p)mjp)K m((u + a(p)mjr)
m=N,2N o

* ImPartLAuOP/a(p))e be ~ du
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